

CsI Crystal Testing: Wrappings and End Treatments

J. Eric Grove Naval Research Lab 11 February 1999

Position Response of CsI

NASA/Goddard 10 - 11 Feb. 1999

Map of scintillation in 36 cm CsI crystal.

- □ Scanned ¹³⁷Cs source (662 keV).
- Crystal viewed full-face by PMT (connected with optical grease). Far face was blackened.
- ☐ Side wrap was Tetratek and aluminized mylar.
- Scintillation light yield drops by ~ half over length of crystal.
- □ Solid line is 42-cm exponential attenuation length.
- ☐ "Hotspot" at ~ 13 cm is real. ~2-3% magnitude similar to BaBar hotspots.

Long-term Pressure Tests

NASA/Goddard 10 - 11 Feb. 1999

36-cm crystal, Tetratek and mylar wrap, held under pressure and scanned.

- \supset >50 days of 10-g load on all surfaces.
 - All curves normalized to first measurement.
- ☐ Light yield decreases under pressure.
- □ Light yield stabilizes after ~10 days at ~5 15% loss.
- □ Pressure increased to 23 g.
- ☐ Light yield rapidly stabilizes at an additional ~3% loss.

Crystal Test Procedure

- Crystals are numbered and inspected as delivered.
 - Factory wraps are teflon-only or Tyvek and aluminum foil.
 - Additional wrap of aluminized mylar is added if necessary.
- Various end treatments may be applied as required for test.
- Crystal is mounted above 2" PMT.
 - Air gap between crystal and PMT.
- ²²Na or ¹³⁷Cs source is scanned along crystal with motor drive.
- Good spectroscopy is achieved.

Ukrainian Crystal Tests

NASA/Goddard 10 - 11 Feb. 1999

- ☐ Crystals received from Ukraine
 - Four 310 x 30 x 23 mm
 - Two 400 x 30 x 23 mm
- ☐ Test data accumulated at Ukraine.
 - Crystal viewed by PMT with air gap.
 - Surfaces polished and roughened.
 - Wrap is Tyvek and aluminum foil.
 - Far end is Tyvek.
 - ²²Na source scanned along length.

γ-Na-22, E_γ=1275keV 167P3.31.17

White Mask

NASA/Goddard 10 - 11 Feb. 1999

32-cm crystal scanned with ²²Na.

- ☐ All surfaces polished. Tetratek wrap.
- □ Viewed by PMT with air gap.
- □ Near face masked with Tyvek.
- ☐ Two masks, different apertures:
 - Size and location of large PIN.
 - Size and location of small PIN.
- ☐ Light tapering is independent of aperture size.
- Attenuation length (beyond 10 cm) $\lambda = 110$ cm.

Black Mask

NASA/Goddard 10 - 11 Feb. 1999

32-cm crystal scanned with ²²Na.

- ☐ All surfaces polished. Tetratek wrap.
- □ Viewed by PMT with air gap.
- □ Near face masked with black paper.
- ☐ Two masks, different apertures:
 - Size and location of large PIN.
 - Size and location of small PIN.
- ☐ Light tapering is independent of aperture size.
- Attenuation length (all crystal) $\lambda = 75 \text{ cm}.$

Black or White Ends?

NASA/Goddard 10 - 11 Feb. 1999

- ☐ How does end treatment affect light yield and attenuation?
 - 32-cm Crismatec crystal mapped with ²²Na source.
 - PMT readout with black or white aperture mask (~1 cm² open).
- □ Black mask reduces light S to ~2/3 of white mask.
- □ Black mask shortens attenuation length.

 $\lambda = 75$ cm for black

 $\lambda = 110$ cm for white

- \square Position resolution scales as λ / \sqrt{S}
 - Black mask gives
 - 1/3 less light, but
 - 20% better position resolution.

Two-ended Measurements

NASA/Goddard 10 - 11 Feb. 1999

- □ View crystal from both ends through black mask with aperture of size and location of large PIN.
 - "Red" = Hamamatsu R669 PMT
 - "Blue" = Hamamatsu R5900 PMT
- Both ends show same attenuation length $\lambda = 70 \text{ cm}$
- □ ooops. Vibration knocked blue PMT out of fixture during run.

Naval Research Lab Washington DC

Light Asymmetry

- ☐ We use light asymmetry to measure position of shower (or photopeak) along crystal.
- ☐ Light asymmetry measure:
 - If attenuation is linear, use
 - $-x = 2 \lambda (Right-Left) / (Right + Left)$
 - If attenuation is exponential, use
 - $-x = \lambda \log(Right / Left)$
- □ Note that this crystal has twice the slope of the 32-cm crystal used at SLAC and CERN.
 - Will give factor-of-two better position resolution.
- Asymmetry can be readily mapped with lab sources and PMTs.

Location, Location

- ☐ We mapped the light yield across the face of the crystal.
 - Varied size and location of aperture across face of crystal.
 - Aperture sized for big PIN at different locations on end face.
- ☐ The light yield varies across the end face of the crystal.
 - Center and corners are bright.
 - Sides are dim.
 - Note total effect is only 20-30%.

CERN Beam Test '98

